Cellular factors important for the de novo formation of yeast prions.
نویسندگان
چکیده
Prions represent an unusual structural form of a protein that is 'infectious'. In mammals, prions are associated with fatal neurodegenerative diseases such as CJD (Creutzfeldt-Jakob disease), while in fungi they act as novel epigenetic regulators of phenotype. Even though most of the human prion diseases arise spontaneously, we still know remarkably little about how infectious prions form de novo. The [PSI+] prion of the yeast Saccharomyces cerevisiae provides a highly tractable model in which to explore the underlying mechanism of de novo prion formation, in particular identifying key cis- and trans-acting factors. Most significantly, the de novo formation of [PSI+] requires the presence of a second prion called [PIN+], which is typically the prion form of Rnq1p, a protein rich in glutamine and aspartic acid residues. The molecular mechanism by which the [PIN(+)] prion facilitates de novo [PSI+] formation is not fully established, but most probably involves some form of cross-seeding. A number of other cellular factors, in particular chaperones of the Hsp70 (heat-shock protein 70) family, are known to modify the frequency of de novo prion formation in yeast.
منابع مشابه
Prions in yeast.
The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the "protein only" model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has be...
متن کاملDe novo appearance and "strain" formation of yeast prion [PSI+] are regulated by the heat-shock transcription factor.
Yeast prions are non-Mendelian genetic elements that are conferred by altered and self-propagating protein conformations. Such a protein conformation-based transmission is similar to that of PrP(Sc), the infectious protein responsible for prion diseases. Despite recent progress in understanding the molecular nature and epigenetic transmission of prions, the underlying mechanisms governing prion...
متن کاملAutophagy protects against de novo formation of the [PSI+] prion in yeast.
Prions are self-propagating, infectious proteins that underlie several neurodegenerative diseases. The molecular basis underlying their sporadic formation is poorly understood. We show that autophagy protects against de novo formation of [PSI(+)], which is the prion form of the yeast Sup35 translation termination factor. Autophagy is a cellular degradation system, and preventing autophagy by mu...
متن کاملSup35 methionine oxidation is a trigger for de novo [PSI+] prion formation
The molecular basis by which fungal and mammalian prions arise spontaneously is poorly understood. A number of different environmental stress conditions are known to increase the frequency of yeast [PSI(+)] prion formation in agreement with the idea that conditions which cause protein misfolding may promote the conversion of normally soluble proteins to their amyloid forms. A recent study from ...
متن کاملMethionine Oxidation of Sup35 Protein Induces Formation of the [PSI+] Prion in a Yeast Peroxiredoxin Mutant
The frequency with which the yeast [PSI(+)] prion form of Sup35 arises de novo is controlled by a number of genetic and environmental factors. We have previously shown that in cells lacking the antioxidant peroxiredoxin proteins Tsa1 and Tsa2, the frequency of de novo formation of [PSI(+)] is greatly elevated. We show here that Tsa1/Tsa2 also function to suppress the formation of the [PIN(+)] p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 36 Pt 5 شماره
صفحات -
تاریخ انتشار 2008